A Game-Theoretic Approach for Adaptive Action Selection in Close Proximity Human-Robot-Collaboration

M.Sc. Volker Gabler
Tim Stahl, Gerold Huber, Ozgur Oguz, Dirk Wollherr

Chair of Automatic Control Engineering Technical University Munich

Teaser Talk - ICRA 2017, Singapore, May/31/2017

Motivation

Autonomous Robots in Human-Robot Collaboration (HRC)

Given high-level actions [Nau+ 2004] e.g.

- pick(robot, object1)
- pick(robot, object2)
- pick(human, object1)
- pick(human, object3)

Adapt high-level action-selection to

- Minimize agents' effort
- Maximize team-efficiency
- Guarantee Safety for Human

Exemplary Human-Robot Scenario

Contribution of this Work

HRC Approaches

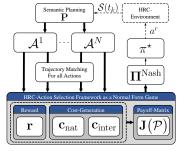
State of the art: Adapt to human action without reflecting human adaptivity [Mainprice+ 2013; Hawkins+ 2014; Maeda+ 2014; Gombolay+ 2015]

Contribution: Evaluation of the complete action-space for all involved agents using normal form games

HRC and Game Theory

State of the art: Application limited to differential game theory or simulations [Jarrassé+ 2012; Li+ 2015; Bahram+ 2015; Turnwald+ 2016]

Contribution: discrete online action selection in real HRC


General Approach

Iterative Decision Process as a **Normal Form Game**

- Direct mapping of high-level action and estimated trajectory
- Interaction heuristics rather than purely data-driven models

Applied Interaction Heuristics

- \blacksquare Task dependent reward r_k
- Native cost c_k^{nat}
- Interactive cost c_{ν}^{inter}

Schematic Framework

General Approach

 $J_k(\boldsymbol{\pi}) = r_k - c_k^{\text{nat}}(a_k) - c_k^{\text{inter}}(\boldsymbol{\pi}), \text{ with } a_k \in \boldsymbol{\pi}$

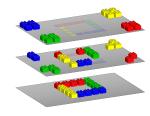
Summary

Experimental Evaluation

Baseline comparison to a fixed action policy

- Cooperative pick- and place assembly
- \blacksquare n=30 participants

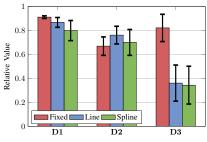
Claimed Hypothesis


The robot's action-selection ...

- **H1** will be preferred by the participants ...
- **H2** increase the safety aspects ...
- H3 decrease the overall efficiency ...
- ... compared to a non-reactive strategy.

Experimental Measurements

- Subjective questionnaire (**H1**)
- Potential field safety layer (**H2**)
- Overall completion time (H3)



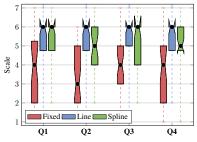
Experimental Results

- D1 Normalized overall assembly time.
- D2 Normalized human idle time.
- D3 Normalized repellent force.

Empirical Measurement Data

D1: confirming H2

D3: confirming H3


How would you grade the ...

... collaboration with the robot?

... robot as a helpful co-worker?

... motion reaction of the robot?

Q4 ... action selection of the robot?

Questionnaire Evaluation

confirming **H1**

Q1

Q2

Q3

Summary

Conclusion

- Design of a **normal form game** decision framework
- Online application of proposed framework
- Confirmed three hypothesis in extensive user-study
 - **H1** increased subjective acceptance
 - **H2** increased human safety
 - **H3** improved team-efficiency

Future Work

- Extension to multi-agent systems
- Comparison with latest state-of-the-art on complex scenarios

Extensions at Booth #4

Introduction

- Representative video from experiment recordings
- Further insight on framework and experimental details
- Question, answers and open discussion

References

M. Bahram, A. Lawitzky, J. Friedrichs, M. Aeberhard and D. Wollherr.

A Game Theoretic Approach to Replanning-aware Interactive Scene Prediction and Planning. In: *IEEE Trans. Veh. Technol.* 65.6 (2015), pp. 3981–3992.

M. C. Gombolay, R. A. Gutierrez, S. G. Clarke, D.GF. Sturl and J. A. Shah. Decision-Making Authority, Team Efficiency and Human Worker Satisfaction in Mixed Human-Robot Teams.

In: Autonomous Robots (2015).

K. P. Hawkins, S. Bansal, N. N. Vo and A. F. Bobick. Anticipating human actions for collaboration in the presence of task and sensor uncertainty. In: ICRA. 2014. pp. 2215–2222.

N. Jarrassé, Th. Charalambous and E. Burdet.

A Framework to Describe, Analyze and Generate Interactive Motor Behaviors. In: *PLoS ONE* 7.11 (2012).

III. FLOS ONL 1.11 (2012)

Y. Li, K. P. Tee, W. L. Chan, R. Yan, Y. Chua and D. K. Limbu.

Role Adaptation of Human and Robot in Collaborative Tasks. In: ICRA. 2015, pp. 5602–5607.

G. Maeda, M. Ewerton, R. Lioutikov, H. B. Amor, J. Peters and G. Neumann.

Learning interaction for collaborative tasks with probabilistic movement primitives. In: IEEE-RAS. 2014, pp. 527–534.

J. Mainprice and D. Berenson.

Human-robot collaborative manipulation planning using early prediction of human motion. In: *IROS*. 2013, pp. 299–306.

D. Nau, M. Ghallab and P. Traverso, Automated Planning: Theory & Practice.

Morgan Kaufmann Publishers Inc., 2004, p. 229. ISBN: 1558608567.

A Turnwald, D Althoff, D Wollherr and M Buss.

Understanding Human Avoidance Behavior: Interaction-Aware Decision Making Based on Game Theory.

In: I. J. of Social Robotics 8.2 (2016), pp. 331–351.

