Legible Action Selection in Human-Robot Collaboration

Huaijiang Zhu Volker Gabler Dirk Wollherr

Institute of Automatic Control Engineering Technical University of Munich

26th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN, Lisbon, Portugal, August/29/2017

The Vision - The Adaptive Robot-Co-Worker

The adaptive cobot in an assembly process:

- understand ongoing tasks & human behavior
- select single actions accordingly
- support human co-worker

The Vision - The Adaptive Robot-Co-Worker

The adaptive cobot in an assembly process:

- understand ongoing tasks & human behavior
- select single actions accordingly
- support human co-worker

Problem formulation

legible action selection given multiple tasks

- estimate human belief in current task
- act supportive when needed

Requirements for a legible action selection framework

- increase team-efficiency
- supporting actions are taken when needed
- humans accept robot behavior

Related Work

Legible Motion Planning in HRC

Match human expectations of an excited trajectory by adjusting the motion, as

- goal-driven actions [Dragan+ 2013b: Dragan+ 2013al
- obtained from black-box optimization [Stulp+ 2013: Stulp+ 2015]
- × no task knowledge incorporated

Human Centered Probabilistic Decision Frameworks in HRC

Sequential decision-making problem as a Markov Decision Processes, e.g.

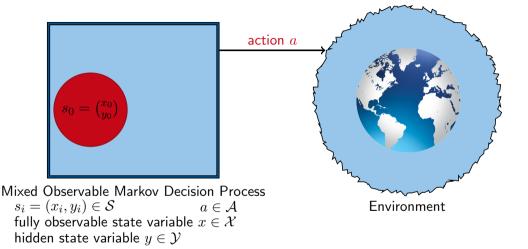
- cost-sensitive action selection based on heuristics [Hoffman+ 2007]
- incorporating human preferences as a single hidden variable [Nikolaidis+ 2015]
- × no legibility involved

Contribution

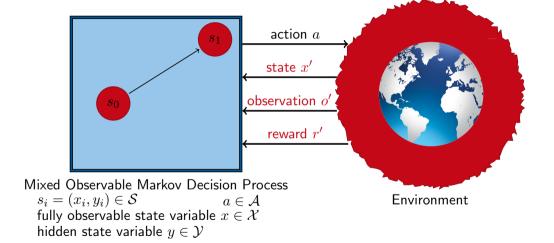
Motivation

Incorporate legibility in a sequential decision-making problem as a hidden goal Markov Decision Process - HGMDP

Mixed Observable Markov Decision Process

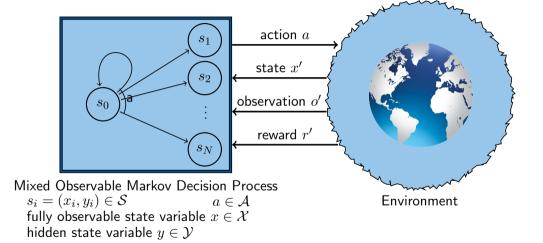


Mixed Observable Markov Decision Process



Motivation

Mixed Observable Markov Decision Process

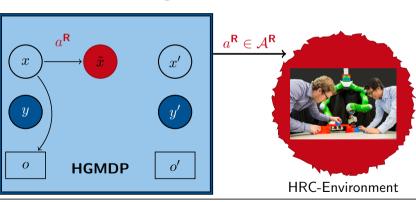


Motivation

Hidden Goal Markov Decision Process

Given a sequential decision problem for a human H and a robot R.

- finite action sets A^{R} , A^{H}
- lacktriangle task progress as fully observable ${\mathcal X}$
- lacktriangle human belief in the goal as hidden state ${\mathcal Y}$



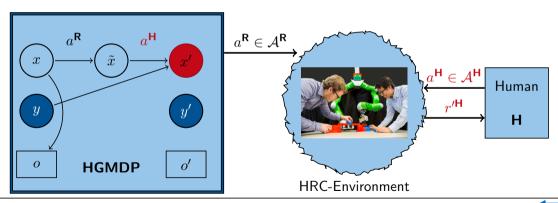
Human

Н

Hidden Goal Markov Decision Process

Given a sequential decision problem for a human H and a robot R.

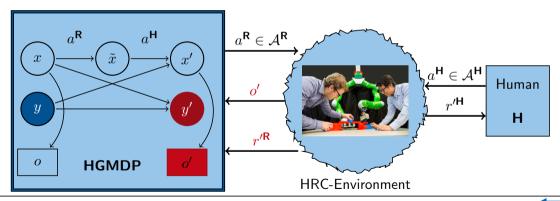
- finite action sets A^{R} , A^{H}
- lacktriangle task progress as fully observable ${\mathcal X}$
- lacktriangle human belief in the goal as hidden state ${\mathcal Y}$



Hidden Goal Markov Decision Process

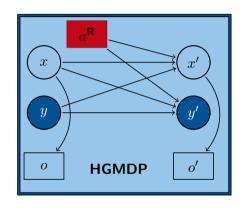
Given a sequential decision problem for a human H and a robot R.

- finite action sets A^{R} , A^{H}
- lacktriangle task progress as fully observable ${\mathcal X}$
- lacktriangle human belief in the goal as hidden state ${\mathcal Y}$



Motivation

Human Belief Update



We assume

- \blacksquare the robot acts deterministically in \mathcal{X}
- **H** follows a stochastic policy $\pi^{H}(\tilde{x}, y, a^{H})$
- conditional independence $x' \perp \!\!\! \perp y'$

dynamic Bayesian Network modelling the relation of $a^{\mathbf{R}}$ to Human belief update:

$$\mathbb{P}(y'|x, y, a^{\mathsf{R}}) \propto \mathbb{P}(a^{\mathsf{R}}|x, y)\mathbb{P}(y'|x)$$

Approximatively Solving HGMDP

Solving **HGMDP** exactly is PSPACE-complete!

Approximative solution

- 1. feature based state aggregation by mapping single actions to task sets
- 2. evaluate human belief at every step
 - if **H**'s belief is correct $(y = y^*)$, solve MDP for y^*
 - lacktriangle select strongest belief of lacktriangle ($y_i
 eq y^*$), solve MDP M_i
- 3. abstracted MDP M_i for false belief of the human
 - states given as $S = \{X, y^*, y_i\}$
 - following legible reward model

$$R_{\mathsf{L},i}(x,y_i,a^{\mathsf{R}}) = \mathbb{P}(y^*|x,y_i,a^{\mathsf{R}}) - \lambda \mathbb{P}(y_i|x,y_i,a^{\mathsf{R}})$$

Motivation

Experimental Setup

(a) Scenario 1

(b) Scenario 2

Main experimental setup

- 2 pick-and-place assembly scenarios
- 3 task goals for each scenario
- \blacksquare n=10 participants
- 18 repetitions each

LEGO-assembly scenario with the goal being unknown to the human collaborator **H**.

Experimental Setup

(a) Scenario 1

(b) Scenario 2

Compared policies

- Efficient, i.e. shortest distance (E)
- HGMDP policy (L)
- HGMDP policy with direct belief feedback (LF)

LEGO-assembly scenario with the goal being unknown to the human collaborator **H**.

Experimental Results - Subjective Evaluation

Confirmed Hypotheses: Compared to policy E, participants will rate the robot's actions in the HGMDP

H1 ... more helpful.

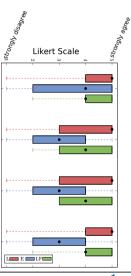
H2 ... more responsive.

Q1 The robot was acting efficiently.

Q2 The robot **adapted** the strategy when I was in doubt about the task.

Q3 The robot reacted when I made errors.

The choice of actions of the robot was helpful.



Q4

Experimental Results - Subjective Evaluation

Confirmed Hypotheses: Compared to policy E, participants will rate the robot's actions in the HGMDP

 $\begin{array}{c} \text{(Q1,)Q4} \rightarrow \checkmark \\ \text{Q2, Q3} \rightarrow \checkmark \end{array}$ **H1** ... more helpful.

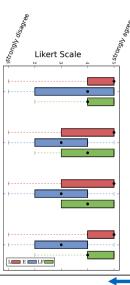
H2 ... more responsive.

Q1 The robot was acting efficiently.

Q2 The robot adapted the strategy when I was in doubt about the task.

Q3 The robot reacted when I made errors.

Q4 The choice of actions of the robot was helpful.



Experimental Results - Empirical Evaluation

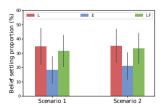
Claimed Hypotheses: By applying HGMDP,

H3 ... **H**'s belief converges faster to the correct goal.

H4 .. the overall error-rate decreases.

(supportive agent) (prodctivity)

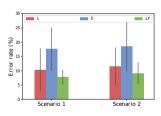
Belief settling proportion



√ confirming H3

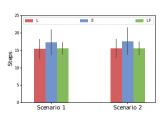
Motivation

Error rate



√ confirming H4

Number of task completion steps



Summary

Conclusion

- outline of HGMDP- a sequential and adaptive decision-making framework
- online estimation of human belief
- confirmed four hypothesis in user-study
- distinct improvements in subjective feedback
- increased empirical performance measures

References

A Dragan and S Srinivasa, Generating Legible Motion. In: Robotics: Science and Systems (2013).

A Dragan, K Lee and S Srinivasa, Legibility and Predictability of Robot Motion. In: HRI, 2013.

G Hoffman and C Breazeal. Cost-Based Anticipatory Action Selection for Human-Robot Fluency. In: IEEE Trans. Robot. 23 (2007), pp. 952-961.

S Nikolaidis, R Ramakrishnan, K Gu and J Shah,

Efficient Model Learning from Joint-Action Demonstrations for Human-Robot Collaborative Tasks. In: HRI. 2015, pp. 189–196.

F Stulp, J Grizou, B Busch and M Lopes, Facilitating Intention Prediction for Humans by Optimizing Robot Motions. In: IROS, 2015.

F Stulp and O Sigaud. Policy Improvement: Between Black-Box Optimization and Episodic Reinforcement Learning. In: JFPDA. 2013.

Additional Information & Material

Experimental Results - Subjective Evaluation

Confirmed Hypotheses: Compared to policy E, participants will rate the robot's actions in the HGMDP

H1 ... more helpful.

H2 ... more responsive.

Wilcoxon signed-rank test results

The robot was acting efficiently.

The robot adapted the strategy when I was in doubt about the task.

Q3 The robot reacted when I made errors

Q4 The choice of actions of the robot was helpful.

Question	Overall Comparison	L vs E	L vs LF	E vs LF
Q1	0.0009	0.0013	0.8591	0.0004
Q2	< 0.0001	< 0.0001	0.2789	0.0002
Q3	< 0.0001	< 0.0001	0.5525	< 0.0001
Q4	< 0.0001	< 0.0001	0.8552	< 0.0001

Feature Based State Aggregation

General Assembly Scenario

Given M tasks $\mathcal{T} = \{T_1, T_2 ... T_M\}$, there exists

- \blacksquare a set of all task components $\mathcal{C} = \bigcup_{i=1}^{|\mathcal{T}|} T_i$
- lacksquare a set tasks $\mathcal{P}_i = \{T_i | c_i \in T_i\}$ each components belongs to

State Aggregation

Defining an equivalence relation over C and P

$$\mathcal{R} = \left\{ (c_m, c_n) | \mathcal{P}_m = \mathcal{P}_n \ c_m, c_n \in \mathcal{C} \right\}$$
$$\Pi = \left\{ [c]_{\mathcal{R}} | c \in \mathcal{C} \right\}$$

obtains the final state aggregation by an additional error-counter $\varphi_e(x)$:

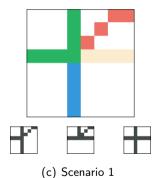
$$\Phi(x): x \mapsto |\Pi \cap T_x| \mapsto \left[\varphi_e(x), \varphi_1(x), \varphi_2(x), \dots, \varphi_{|\Pi|}(x)\right]^{\mathsf{T}}$$

Example State Aggregation

State aggregation - Scenario 1

- \blacksquare $\mathcal{T} = \{T_1, T_2, T_3\}$ tasks
- lacksquare $\mathcal{C} = \{c_1, c_2 \dots c_{19}\}$ legal positions
- $\blacksquare \mathcal{P} = \{P_1, P_2, P_3, P_4\}$ task mappings shwon in green, blue, red and beige
- \blacksquare $|E| = \{7, 4, 4, 4\}$ maximum counter per set P_i
- $|\varphi_e(x)| < 4$ error counter

Define a mapping of single task components to tasks: $\Phi(x): x \mapsto [\varphi_e(x), \varphi_1(x), \varphi_2(x), \varphi_3(x), \varphi_4(x)]^\mathsf{T}$



Transition Probability Functions

We assume that **H** always acts greedily according to her goal expectation

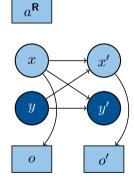
$$\pi^{\mathbf{H}}(x, y, a^{\mathbf{H}}) \propto \exp\left(\beta_2 R^{\mathbf{H}}(x, y, a^{\mathbf{H}})\right)$$

The robot acts deterministically such that

$$T_X(x, y, a^{\mathbf{R}}, x') = \mathbb{P}(x'|x, y, a^{\mathbf{R}}) = \pi^{\mathbf{H}}(\tilde{x}, y, a^{\mathbf{H}})$$

As shown in the DBN that $x' \perp \!\!\!\perp y'$ holds, such that

$$T_Y(x, y, a^{\mathbf{R}}, x', y') = \mathbb{P}(y'|x, y, a^{\mathbf{R}})$$



Transition Probability Functions

We assume that $\ensuremath{\mathbf{H}}$ always acts greedily according to her goal expectation

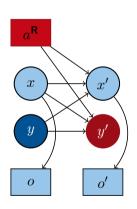
$$\pi^{\mathbf{H}}(x, y, a^{\mathbf{H}}) \propto \exp\left(\beta_2 R^{\mathbf{H}}(x, y, a^{\mathbf{H}})\right)$$

The robot acts deterministically such that

$$T_X(x, y, a^{\mathbf{R}}, x') = \mathbb{P}(x'|x, y, a^{\mathbf{R}}) = \pi^{\mathbf{H}}(\tilde{x}, y, a^{\mathbf{H}})$$

As shown in the DBN that $x' \perp \!\!\! \perp y'$ holds, such that

$$T_Y(x, y, a^{\mathbf{R}}, x', y') = \mathbb{P}(y'|x, y, a^{\mathbf{R}})$$



Goal Inference

The goal inference in **HGMDP** is obtained from the distribution of y at each transition according to

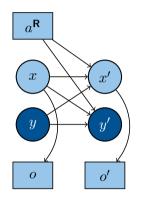
$$b'(y') \propto \mathbb{P}(o|x', y', a^{\mathbf{R}}) \sum_{y} T_{XY}(x, y, a^{\mathbf{R}}, x', y') b(y)$$

The observation is modeled deterministically

$$\mathbb{P}(o|x', y', a^{\mathbf{R}}) = \begin{cases} 1, & \text{if } o = a^{\mathbf{H}} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

The state transition function is given by

$$T_{XY}(x, y, a^{\mathbf{R}}, x', y') = \pi^{\mathbf{H}}(\tilde{x}, y, a^{\mathbf{H}}) \mathbb{P}(y'|x, y, a^{\mathbf{R}})$$



Incorporating Legibility in Reward Model

Human inference probability for **R**'s actions:

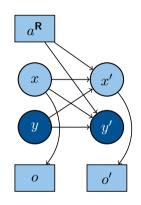
$$\mathbb{P}(a^{\mathbf{R}}|x,y) \propto \exp\left(\beta_1 R^{\mathbf{R}}(x,y,a^{\mathbf{R}})\right)$$

Given the actual goal y^* , the legible reward model results in:

$$R_{\mathsf{L}}(x, y, a^{\mathsf{R}}) = \mathbb{P}(y^*|x, y, a^{\mathsf{R}}) - \lambda \sum_{y' \in \mathcal{Y} \setminus \{y^*\}} \mathbb{P}(y'|x, y, a^{\mathsf{R}})$$

In return, this results in the following update rule for **H**'s belief:

$$\mathbb{P}(y'|x,y,a^{\mathbf{R}}) \propto \begin{cases} p_{\mathbf{c}} \mathbb{P}(y'|x,a^{\mathbf{R}}), & \text{if } y = y' \\ \frac{1-p_{\mathbf{c}}}{|\mathcal{Y}|-1} \mathbb{P}(y'|x,a^{\mathbf{R}}), & \text{otherwise} \end{cases}$$



Approximatively Solving HGMDP

Approximate **HGMDP** based on the current human belief y by a fully observable MDP M_i with $\mathcal{S} = \{\mathcal{X}, y^*, y_i\}$ and

$$T_i = \mathbb{P}(x', y'|x, y, a^{\mathbf{R}}) = \begin{cases} \pi^{\mathbf{H}}(\tilde{x}, y_i, a^{\mathbf{H}}), & \text{if } y' = y_i \\ 0, & \text{if } y' \neq y_i \end{cases}$$

as well as

$$R_{\mathsf{L},i}(x,y_i,a^{\mathsf{R}}) = \mathbb{P}(y^*|x,y_i,a^{\mathsf{R}}) - \lambda \mathbb{P}(y_i|x,y_i,a^{\mathsf{R}})$$

Obtain HGMDPPolicy

Resulting in the overall policy to solve **HGMDP**

$$\pi_{\mathsf{L}}(x, b(y), a^{\mathsf{R}}) = \begin{cases} \pi^* \left(M_i(\mathcal{S} := \mathcal{X}) \right) & \text{if } \arg \max b(y) = y^* \\ \hat{\pi}_{\mathsf{L}}(x, \arg \max b(y), a^{\mathsf{R}}) & \text{else} \end{cases}$$

General Approach - Hidden Goal Markov Decision Process

Problem Definition

Given a sequential decision problem for a human H and a robot R.

- Finite action sets $\mathcal{A}^{\mathbf{R}}$. $\mathcal{A}^{\mathbf{H}}$.
- Reward functions given as $R^{\mathbf{R}}$, $R^{\mathbf{H}}$,...
- Obtain $a^R = \operatorname{argmax} \sum_{i=1}^{N} R_i$.

Hidden Goal Markov Decision Process

Given as $M = (\mathcal{X}, \mathcal{Y}, I_V, \mathcal{A}^{\mathsf{R}}, \mathcal{A}^{\mathsf{H}}, \mathcal{O}, T_X, T_V, Z, R^{\mathsf{R}}, R^{\mathsf{H}}, R_{\mathsf{L}}, \gamma, u^*).$

- \blacksquare \mathcal{X} : fully observable task state.
- \mathcal{Y} : hidden variable representing human goal expectation (y^* as the actual goal).
- \blacksquare \mathcal{O} : set of observations, given as the actual human action.
- $T_X = \mathbb{P}(x'|x,y,a^{\mathbf{R}})$ and $T_Y = \mathbb{P}(y'|x,y,a^{\mathbf{R}},x')$: transition probability functions.
- Z: probability distribution to observe o.
- \bullet γ : discount factor $\in [0,1]$.

Hypotheses and Measurements

Claimed Hypotheses

Compared to the *efficient* policy, Participants will rate the robot's actions in the **HGMDP**...

H1 more helpful.

H2 more responsive.

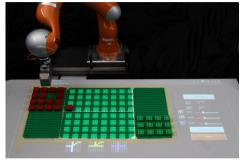
By applying the **HGMDP**, ...

H3 H's belief converges faster to the correct goal.

H4 the overall error-rate decreases.

Experimental Measurements

- subjective questionnaire (H1, H2)
- belief settling proportion, w.r.t. to steps (H3)
- error-rate over all runs (H4)



LEGO-assembly scenario with the goal being unknown to the human collaborator H

Outsourced