

Haptic Object Identification for Advanced Manipulation Skills

V. Gabler¹, K. Maier¹, S. Endo² and D. Wollherr¹

¹Chair of Automatic Control Engineering, Technical University of Munich

²Chair of Information-Oriented Control Engineering, Technical University of Munich

9th International Conference on Biomimetic and Biohybrid Systems,

Living Machines Conference, 30th of July, 2020

Motivation

Allow robots to manipulate unknown objects

Object Identification using Computer Vision

- Extract shapes and geometries
- Extract structural information
- Estimate physical parameters

Object Identification through Haptic Exploration

- Extract shapes and geometries
- ✓ Extract structural information
- ✓ Estimate physical parameters

©IEEE Spectrum

Outline

- Problem Formulation
- Background
- Haptic Exploration
- Haptic Object Identification
- Experimental Results
- Outlook and Summary

Problem Formulation

Iteratively Refine Estimated Object Properties

Given:

- robot pose $oldsymbol{x}_{0:t}$
- control inputs $oldsymbol{u}_{0:t}$
- and measurements $m{r}_{0:t}$

from start to time t, refine object knowledge given as the belief of

$$\begin{array}{ll} \text{(object geometry)} & \boldsymbol{M} \leftarrow \mathcal{F}_m(\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{r}_{0:t}, \boldsymbol{\Theta}), \\ \text{(material parameters)} & \boldsymbol{\varTheta} \leftarrow \mathcal{F}_p(\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{r}_{0:t}, \boldsymbol{M}). \end{array}$$

- ⇒ Identification is directly coupled
- Mainly solved individually in literature

Related Work

Haptic Exploration

- Haptic SLAM [Behbahani+ 2015]
- SLAM with known shapes [Schaeffer+ 2004]
- Bayesian exploration framework [Julian+ 2012]

Haptic Identification

- Tactile object recognition [Pezzementi+ 2011, Friedl+ 2016]
- Object classification [Decherchi+ 2011]
- Material classification [Xu+ 2013]

Outline a combined object estimation framework

Framework Overview

Background

Simultaneous Localization and Mapping (SLAM)

- Estimate pose of robot while simultaneously estimate map of environment
- Joint distribution: $\mathbb{P}\left[oldsymbol{x}_t, oldsymbol{M} | oldsymbol{x}_{0:t-1}, oldsymbol{u}_{0:t}, oldsymbol{r}_{0:t}
 ight]$
- Most common solutions use Extended Kalman Filter and Particle Filters

Haptic SLAM [Behbahani+ 2015]

- Estimate robot pose while constructing a map of object based on haptic feedback
- Particle Filter approach using an occupancy grid

Background – Inference Grids

Occupancy Grid M

- State of cell: $m_t \in \{ \text{occ}, \text{empty} \}$
- Content of cell: $\mathbb{P}\left[m_t = \mathsf{occ}|oldsymbol{r}_t
 ight]$
- Iterative update: $m_t = m_{t-1} + \log \frac{\mathbb{P}[\boldsymbol{r}_t | \boldsymbol{f}]}{1 \mathbb{P}[\boldsymbol{r}_t | \boldsymbol{f}]}$

Inference Grid M [Elfes1989; Korthals2017]

- Multi-layer occupancy grid: $oldsymbol{\mathcal{M}} := \{oldsymbol{M}_0, oldsymbol{M}_1, \dots oldsymbol{M}_n\}$
- Encodes²ⁿstates

Background – Geometric Shape Representation

Particle Filter

Sphere

Cylinder

Box

Representing Objects Using Geometric Primitives

- Data efficient
- Can represent structure by arbitrary combinations
- Allows to directly regress model-parameters from data

Incorporated Models

- Spheres $\Phi := (r, c)$
- Cylinders $\Phi := (r, h, \boldsymbol{c}, \boldsymbol{a})$
- Boxes $\Phi:=(oldsymbol{c}_1,oldsymbol{c}_2,\ldots,oldsymbol{c}_8)$
- Planes $\Phi:=(oldsymbol{n},oldsymbol{c}_1,oldsymbol{c}_2,oldsymbol{c}_3,oldsymbol{c}_4)$

Haptic Exploration

Collected Sensor Data

Sensor

normal contact force

Measurement Procedure

increase force F_t until $F_t > F_{\max}$ or $d_t > d_{\max}$

Measurement Data

$$\boldsymbol{r}_t = (\boldsymbol{x}_t, d_t, F_t)$$

Haptic Exploration – Grid-Based

Haptic Exploration – Grid-Based

1. Select Next Exploration Goal

- utility $U(m_t)$: expected information gain
- accessibility $\alpha(m_t)$: cell reachability
- \Rightarrow select next cell as $\operatorname{argmax}_{m_t} \{ \boldsymbol{U}(m_t) \boldsymbol{\alpha}(m_t) \}$

2. Take New Measurement

3. Process Data

- Update belief of explored cells
- Store measured data in buffer

Haptic Exploration – Shape-Based

Haptic Exploration – Shape-Based

1. Select Next Exploration Goal

utility $oldsymbol{U}(oldsymbol{x}_t)$: evaluates the deviation of shape-types for current particle samples

 \Rightarrow select next cell as $rgmax_{m{x}_t} \left\{ m{U}(m{x}_t) \right\}$

2. Take New Measurement

3. Process Data

- Update belief of current shape particles
- Store measured data in buffer

Haptic Identification – Grid-Based

Haptic Identification – Grid-Based

- Run data-clustering given the new measurements
- Use clusters to refine decision / class boundaries in inference grid
- Re-calculate belief of class membership in inference grid

Haptic Identification – Shape-Based

Haptic Identification – Shape-Based

- Delete particles with lowest belief
- Randomly generate new particles:
 - Update clusters with new measure batch
 - Sample new geometric primitive shape-combinations
- Update belief of all particles for new classification metric

Experimental Results Robot Explorer **Soft Material** Stiff Material

Simulation Environment in <a>©MuJoCo

Experimental Results – Grid Based

	$k[{ m N/m}]$	$\hat{k}[\mathrm{N/m}]$	F_1
Yellow Box	165	107.81	0.966
Green Box	1452	615.11	0.962
Yellow Cyl.	282	164.75	0.834
Green Cyl.	1192	397.34	0.667

Experimental Results – Shape-Based

	$k[{ m N/m}]$	$\hat{k}[\mathrm{N/m}]$	F_1
Yellow Box	165	113.85	0.952
Green Box	1452	717.02	0.987
Yellow Cyl.	282	104.54	0.963
Green Cyl.	1192	947.15	0.987

Conclusion and Outlook

Developed Haptic Exploration and Identification Frameworks

Grid-based

- Minimize cell uncertainty
- Cluster cells
- Output:
 - clustered point clouds

Shape-based

- Minimize shape uncertainty
- Cluster measurements
- Output:
 - clustered point clouds
 - parametrized shape representations

Future Work

- Further improve classification and estimation methods
- Combine frameworks into a hybrid mechanism
- Evaluate performance on robot platform

References

- Behbahani, F., Taunton, R., Thomik, A., Faisal, A.: Haptic SLAM for context-aware robotic hand prosthetics Simultaneous inference of hand pose and object shape using particle filters. International IEEE/EMBS Conference on Neural Engineering, NER (1229297), 719–722 (2015)
- Decherchi, S., Gastaldo, P., Dahiya, R., Valle, M., Zunino, R.: Tactile-data classification of contact materials using computational intelligence. IEEE Transactions on Robotics (3), 635–639 (2011)
- Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer pp. 46–57 (1989)
- Friedl, K.E., Voelker, A.R., Peer, A., Eliasmith, C.: Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robotics Autom. Lett. (1), 516–523 (2016)
- Korthals, T., Kragh, M., Christiansen, P., Karstoft, H. and Jörgensen, R. N. and Rückert, U.: Multi-Modal Detection and Mapping of Static and Dynamic Obstacles in Agriculture for Process Evaluation. Frontiers in Robotics and Al (5), Frontiers (2018)
- □ Julian, B., Angermann, M., Schwager, M., Rus, D.: Distributed robotic sensor networks: An information-theoretic approach. International Journal of Robotics Research (10), 1134–1154 (2012)
- Pezzementi, Z., Plaku, E., Reyda, C., Hager, G.: Tactile-object recognition from appearance information. IEEE Transactions on Robotics (3), 473–487 (2011)
- Schaeffer, M., Okamura, A.: Methods for intelligent localization and mapping during haptic exploration. In: Proceedings of the IEEE International Conference on Systems, Man & Cybernetics. pp. 3438–3445. IEEE (2003)
- ☐ Todorov, E., Erez, T., Tassa, Y.: MuJoCo: A physics engine for model-based control. In: IROS. pp. 5026–5033. IEEE (2012)
- □ Xu, D., Loeb, G., Fishel, J.: Tactile identification of objects using Bayesian exploration. Proceedings of the 2013 IEEE International Conference on Robotics and Automation pp. 3056–3061 (2013)

Robotic Simulation

Appendix – Grid Utility

$$U(c) = \frac{1}{K_m} \sum_{i=1}^{K_m} \sum_{r \in \mathcal{X}} \sum_{\xi^i \in \mathcal{X}} \mathbb{P}\left[r_+ = r | \xi^i\right] \mathbb{P}\left[\xi^i\right] \ln\left(\frac{\mathbb{P}\left[\xi^i | r_+ = r\right]}{\mathbb{P}\left[\xi^i\right]}\right),$$

Accessibility:
$$\alpha(\mathcal{D}_{x,c}) = \begin{cases} \frac{1}{\overline{D}} & \text{if } \boldsymbol{M}_t^0(c_i) = 0 \ \forall c_i \in \mathcal{D}_{x,c}, \\ \left| \frac{1}{\overline{D}} \sum_{c_i \in \mathcal{D}_{x,c}} - \mathrm{sign}(\boldsymbol{M}_t^0(c_i)) \right| & \text{otherwise,} \end{cases}$$

Rank: rank $(c_t, \mathcal{D}_{x,c}) = \alpha(\mathcal{D}_{x,c})U(c)$

Appendix – Shape-Based Utility 1

Appendix – Shape-Based Utility 2

$$U(\mathcal{P}, \mathcal{S}_t) = \sum_{S^j \in \mathcal{S}_t} \sum_{\boldsymbol{p}_i \in \mathcal{P}} \mathcal{N}(\boldsymbol{p}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}) \mathbb{P}\left[S^j | \boldsymbol{x}_t, \boldsymbol{r}_t\right] \ln \left(\frac{\mathcal{N}(\boldsymbol{p}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma})}{\mathbb{P}\left[S^j | \boldsymbol{x}_t, \boldsymbol{r}_t\right]}\right)$$

Verification of Stiffness Model in Mujoco

